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In this paper we give a complete characterization of the strongly unique best
uniform approximations from periodic spline spaces. We distinguish between even-
dimensional and odd-dimensional periodic spline spaces. These spaces are weak
Chebyshev if and only if their dimension is odd. We show that the strongly unique
best approximation from periodic spline spaces of odd dimension can be charac-
terized alone by alternation properties of the error. This is not the case for
even dimension. In this case an additional interpolation condition arises in our
characterization. � 1999 Academic Press

INTRODUCTION

Standard spaces for approximating (b&a)-periodic, continuous func-
tions f : R [ R, (i.e., f (x)= f (x+(b&a)), x # R) are spaces of periodic
splines. We denote by Pm(Kn) the n-dimensional space of (b&a)-periodic
splines of degree m�1 with the set of knots Kn=[x0 , ..., xn], where
a=x0<x1< } } } <xn&1<xn=b. Moreover, we denote C=[ f # C(R) : f is
(b&a)-periodic].

In this paper we treat best approximation by Pm(Kn) with respect to the
uniform norm, defined by

& f &�=sup[ | f (t)| : t # [a, b]], f # C

i.e., to determine pf # Pm(Kn) such that

& f& pf &��& f& p&� , p # Pm(Kn).
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Best uniform approximations from Pm(Kn) are not unique, in general.
Davydov [4] gave some sufficient conditions for unicity of best uniform

approximation from Pm(Kn).
Meinardus and Nu� rnberger [12] showed that every function f # C

has a unique L1 -approximation pf from Pm(Kn) (i.e., �b
a |( f &pf)(t)| dt<

�b
a |( f &p)(t)| dt, p # Pm(Kn)"[ pf]). This result holds independent of the

dimension.
In this paper we consider the so-called strongly unique best uniform

appproximation pf # Pm(Kn) of a given f # C, i.e.,

& f& pf&�+Kf &p& pf &��& f& p&� , p # Pm(Kn)

where Kf>0. For weak Chebyshev spaces (in particular spline spaces
without periodicity), Nu� rnberger [15] found a complete characterization
of the strongly unique best uniform appproximation. The aim of this paper
is to give a complete characterization of the strongly unique best uniform
appproximations from periodic spline spaces. The characterization is dif-
ferent for odd and even dimension of Pm(Kn).

As usual, results on interpolation play an essential role for treating
approximation problems. The interpolation problem with respect to
[t1 , ..., tn] so that t1< } } } <tn<t1+(b&a) is to determine a periodic
spline p # Pm(Kn) such that

p(tk)= f (tk), k=1, ..., n (1)

where f # C is given.
Schumaker [18; 19, Theorem 8.8] showed that if the dimension of

Pm(Kn) is odd, then a Schoenberg-Whitney type condition characterizes
those sets [t1 , ..., tn] for which the interpolation problem (1) has a unique
solution from Pm(Kn) for every f # C. If the dimension of Pm(Kn) is even,
then this condition is only necessary.

Davydov [2] found a characterization of best uniform approximations
from Pm(Kn). In the case of odd dimension, this characterization is similar
to the classical result of Rice [17] and Schumaker [20] on best uniform
approximations from spline spaces (without periodicity) (An alternative
proof was given in [23, Satz 4.1.1].) Moreover, in the case of even dimen-
sion, an additional condition appears in the characterization given in [2].

The following investigations show that the case of odd dimension is
similar to the characterization of Nu� rnberger [16, Theorem 4.4.] on
strongly unique best uniform approximation from spline spaces (without
periodicity). On the other hand, if the dimension of Pm(Kn) is even, then
an additional interpolation condition is needed in our characterization
theorem.
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To prove these results, we give some statements on (Hermite-) interpola-
tion by periodic spline spaces of even dimension which are of independent
interest.

This paper is organized as follows. In the first section we state our main
results (Theorems 3 and 5) on the strongly unique best uniform approxi-
mations from periodic spline spaces. Proofs of these characterizations are
given in Section 4 (Theorem 3) and Section 5 (Theorem 5). In Section 2,
we give necessary conditions for the strongly unique best uniform
approximation from Pm(Kn) which can be formulated independent of the
dimension.

Section 3 contains some preliminary results which are needed for the
proofs in Sections 4 and 5. Among others, some results on interpolation by
periodic splines in the case of even dimension are given there.

1. MAIN RESULTS

Let m, n be natural numbers and Kn=[x0 , ..., xn] be a set of knots
so that a=x0<x1< } } } <xn&1<xn=b. Moreover, we set xi+ jn=
xi+ j(b&a), i=1, ..., n, j # Z"[0]. We write Cq(R) for the space of all q
times continuously differentiable, real functions and 6m for the space of
polynomials of degree at most m. We denote by

Sm=[s # C m&1(R) : s | [xi , xi+1] # 6m , i # Z]

and call

Pm(Kn)=Sm & C

the space of periodic splines of degree m with the set of knots Kn . Each
spline s # Sm can be written as s#��

k=&� :kBk , where Bk , k # Z, is the
B-Spline with support [xk , xk+m+1].

We call an n-dimensional subspace G of C weak Chebyshev, if every
function g # G has at most n&1 sign changes in each period, i.e., there does
not exist a set [t1 , ..., tn+1] such that t1< } } } <tn+1<t1+(b&a), with
g(ti) g(t i+1)<0, i=1, ..., n. It is well known (cf. Nu� rnberger [16, Theorem
1.6.]) that the weak Chebyshev property of G is equivalent to the existence
of a basis [g1 , ..., gn]�G such that for all t1< } } } <tn<t1+(b&a),

g1(t1) } } } gn(t1)

D \g1

t1

} } }
} } }

gn

tn+=det \ b b +�0.

g1(tn) } } } gn(tn)
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We note that by induction on m and using Rolle's theorem it is not dif-
ficult to verify that every spline in Pm(Kn) has at most n&1 (respectively
n) sign changes over period, if n is odd (respectively even). In particular,
the n-dimensional space Pm(Kn) is weak Chebyshev if and only if n is odd.
This result is connected with the fact that each spline p # Pm(Kn) with only
finitely many zeros in [a, b) has at most n&1 (respectively n) zeros (count-
ing multiplicities) in [a, b), if n is odd (respectively even). Therefore, if n is
odd and n�m+1, then Pm(Kn) restricted to [a, b), is a Chebyshev space
(cf. Meinardus and Walz [13] and [23, Satz 1.1.5]).

Following Davydov [2], we give the following definition for the case of
even dimension.

Definition 1. Let n be even. If there exists a spline from Pm(Kn)
having exactly the simple zeros t1< } } } <tn(<t1+(b&a)) in [t1 , t1+
(b&a)), then we call [t1 , ..., tn] a not-interpolation set, briefly denoted by
NI-set, for Pm(Kn).

The characterization of NI-sets for P1(Kn) was given in [10] (see also
[23, Satz 2.2.8]). Moreover, examples of NI-sets for periodic spline spaces
of higher degree can be found in [7, 11, 14, 21, 23].

We begin with the definition of alternating extreme points for periodic
functions, which play a fundamental role in the following investigations.

Definition 2. Let h # C, ! # [a, b) and a non-empty subset M�
[!, !+(b&a)] be given. Let

Eh, M=[t # M : |h(t)|=&h&�]

denote the set of extremal points of h with respect to M. Points
t1< } } } <tr(<t1+(b&a)) in M are called alternating extreme points,
briefly denoted by A-points, of h in M if there exists a sign _ # [&1, 1]
such that

_(&1)k h(tk)=&h&� , k=1, ..., r.

We briefly denote [t1 , ..., tr] an A-set of h in M. For the maximal number
of A-points of h in M, we write A(h) |M .

The following result shows that if the periodic spline space is of odd
dimension, then the strongly unique best uniform approximation is charac-
terized alone by alternation properties of the error. (We remark that it is
non-trivial to deduce this result from Nu� rnberger [15].)
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Theorem 3. Suppose that n is odd. Let f # C"Pm(Kn) and a spline
pf # Pm(Kn) be given. The following statements are equivalent.

(i) The spline pf is a strongly unique best uniform approximation of f
from Pm(Kn).

(ii) For every interval (xi , xi+m+ j), j=1, ..., n&m&1, i # Z, we have

A( f &pf) | (xi , xi+m+j)
� j+1 (2)

if n>m+1, and

A( f &pf) | [a, b]�n+1. (3)

We note that the result of Theorem 3 is similar to the characterization
of the strongly unique best uniform approximation from the spline space

Sm(x1 , ..., xn&1)=[s=s0 | [a, b] : s0 # Sm]

(without periodicity) given by Nu� rnberger [15; 16, Theorem 4.4].
The main purpose of this paper is to characterize the strongly unique

best uniform approximation from Pm(Kn) in the case of even dimension.
We need the following definition.

Definition 4. Let h # C, ! # [a, b) and a non-empty interval I�[!,
!+(b&a)] be given. Moreover, let [t1 , ..., tr] be an A-set of h in I, where
r=A(h)| I , and set t0=inf[t : t # I], tr+1=sup[t : t # I]. We define for all
k # [1, ..., r],

:k=min[t # [tk&1 , tk]: h(t)=h(tk)],

;k=max[t # [tk , tk+1] : h(t)=h(tk)],

and call Ik=[:k , ;k], k=1, ..., r, the alternation intervals of h in I. We
denote by I 0

k=(:k , ;k).

We now state our characterization. The main difference to Theorem 3 is
that it contains an additional interpolation condition for a set placed inside
the alternation intervals (of an interval with length b&a) of the error.

Theorem 5. Suppose that n is even. Let f # C"Pm(Kn) and a spline
pf # Pm(Kn) be given. The following statements are equivalent.

(i) The spline pf is a strongly unique best uniform approximation of f
from Pm(Kn).

(ii) For every interval (xi , xi+m+ j), j=1, ..., n&m&1, i # Z, we have

A( f &pf)| (xi , xi+m+ j)
� j+1 (4)

5STRONG UNICITY AND PERIODIC SPLINES



if n>m+1, and there exists a ! # [a, b) such that

A( f &pf) | [!, !+(b&a)]�n+1 (5)

and if there exists !* # [a, b) such that f &pf has exactly n alternation inter-
vals Ik , k=1, ..., n, in [!*, !*+(b&a)], then there exists a NI-set
[t1 , ..., tn] for Pm(Kn) such that tk # Ik , k=1, ..., n, and tk # I 0

k whenever I 0
k

is non-empty.

For completeness, we formulate the characterization of best uniform
approximations from Pm(Kn) due to Davydov.

Theorem 6 (Davydov [2]). Let f # C"Pm(Kn) and a spline pf # Pm(Kn)
=span[ p1 , ..., pn] be given. Consider the following statements.

(i) The spline pf is a best uniform approximation of f from Pm(Kn).

(ii) There exist j # [1, ..., n], i # Z, such that

A( f &pf) | [xi , xi+j]
�d+1

where d=dim(Pm(Kn) | [xi , xi+ j]
).

(iii) There exists an A-set [t1 , ..., tn] of f &pf in [a, b], which is a
NI-set for Pm(Kn).

(iv) There exist ! # [a, b) and an A-set [t1 , ..., tn+1] of f &pf in
[!, !+(b&a)) with

D \ p1

t1

} } }
} } }

pn

tn + D \ p1

t2

} } }
} } }

pn

tn+1+>0.

If n is odd, then (i) and (ii) are equivalent. If n is even, then (i) holds if and
only if (ii), with j�n&m, if n�m+1, or (iii) or (iv) is satisfied.

2. NECESSARY CONDITIONS FOR STRONG UNICITY

In this section we give necessary conditions for the strongly unique best
approximation from Pm(Kn), which can be formulated independently of the
dimension. For this, we need a lemma on the existence of certain functions
from weak Chebyshev spaces and the following characterization which
follows from Wulbert [22] (see also Bartelt and McLaughlin [1]).

Theorem 7. Let f # C"Pm(Kn) and a spline pf # Pm(Kn) be given. The
following statements are equivalent.
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(i) The spline pf is a strongly unique best uniform approximation of f
from Pm(Kn).

(ii) There does not exist a non-trivial spline p # Pm(Kn) such that

( f &pf)(t) p(t)�0, t # Ef &pf , [a, b] . (6)

The next lemma follows from a well-known result on weak Chebyshev
spaces (Jones and Karlovitz [6], Deutsch, et al. [5], see also Nu� rnberger
[16, Corollary 1.7.]).

Lemma 8. The following statements hold.

(i) Let S=span[Bi , ..., Bi+ j&1]. Then for all integers r # [1, ..., j]
and all points xi=t1<t2< } } } <tr<tr+1=xi+m+ j , there exists a non-trivial
spline s # S such that

(&1)k s(t)�0, t # [tk , tk+1], k=1, ..., r.

(ii) Suppose that n is odd. Then for all integers r # [1, ..., n] and all
points t1<t2< } } } <tr<tr+1=t1+(b&a), there exists a non-trivial spline
p # Pm(Kn) such that

(&1)k p(t)�0, t # [tk , tk+1], k=1, ..., r.

The following lemma gives necessary conditions for the strongly unique
best uniform approximation from Pm(Kn), which are independent of the
dimension.

Lemma 9. Let f # C"Pm(Kn) and a spline pf # Pm(Kn) be given. If pf is
a strongly unique best uniform approximation of f from Pm(Kn), then the
following statements hold:

(i) For every interval (xi , xi+m+ j), j=1, ..., n&m&1, i # Z, we have

A( f &pf) | (xi , xi+m+j)
� j+1 (7)

if n>m+1.

(ii) There exists a ! # [a, b) such that

A( f &pf) | [!, !+(b&a)]�n+1. (8)

Proof. We first show (ii). We begin with the case that n is odd.
Suppose, contrary to our claim, that

A( f &pf) | [!, !+(b&a)]�n
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for any choice of ! # [a, b). In particular,

A( f &pf) | [a, b]=r�n. (9)

We choose an A-set [t1 , ..., tr] of f &pf in [a, b]. Thus,

_(&1)k ( f &pf)(tk)=& f& pf&� , k=1, ..., r

where _ # [&1, 1]. By definition of the accompanying alternation intervals
Ik=[:k , ;k], k=1, ..., r, of f &pf in [a, b] (see Definition 4), we have

_(&1)k ( f &pf)(t)=& f& pf &� , t # Ef &pf , [a, b] & Ik , k=1, ..., r (10)

and by (9)

Ef &pf , [a, b] � .
r

k=1

Ik . (11)

Set t1*=a, t*r+1=b and choose tk* # (;k&1 , :k), k=2, ..., r. Since r�n, by
Lemma 8, (ii), there exists a non-trivial p # Pm(Kn) such that

_(&1)k p(t)�0, t # [tk* , t*k+1], k=1, ..., r. (12)

Since Ik �[tk* , t*k+1], k=1, ..., r, we get by (10), (11), and (12),

( f &pf)(t) p(t)�0, t # Ef &pf , [a, b]

which contradicts, by Theorem 7, the strong unicity of pf .
Now let n be even. Set Kn&1=Kn "[xn&1]. Therefore, Pm(Kn&1)�

Pm(Kn). By the same proof as above, it follows that

A( f &pf) | [a, b]�n.

Let t1< } } } <tn be A-points of f &pf in [a, b). We claim that

card(Ef &pf , [a, b)"[t1 , ..., tn])�1. (13)

To the contrary, suppose that Ef &pf , [a, b)=[t1 , ..., tn]. We first assume that
the homogeneous interpolation problem (1) with respect to [t1 , ..., tn] has
only the trivial solution. Hence, there exists a non-trivial p # Pm(Kn) such
that

p(tk)=( f &pf)(tk), k=1, ..., n.

Therefore,

( f &pf)(t) p(t)>0, t # Ef &pf , [a, b] . (14)
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We now assume that there exists a non-trivial p # Pm(Kn) such that
p(tk)=0, k=1, ..., n. Therefore,

( f &pf)(t) p(t)=0, t # Ef &pf , [a, b] . (15)

By Theorem 7, (14) (respectively (15)) contradicts the strong unicity of pf .
This shows (13). Thus we get an ``additional'' extremal point in [a, b). It
is now easily seen that (8) holds for a suitable ! # [a, b).

We now show that (i) holds. Let n>m+1. Suppose that there exist
j # [1, ..., n&m&1], i # Z, such that

A( f &pf)| (xi , xi+m+ j)
=r� j. (16)

We choose an A-set [t1 , ..., tr] of f &pf in (xi , x i+m+ j). Thus,

_(&1)k ( f &pf)(tk)=& f& pf&� , k=1, ..., r

where _ # [&1, 1]. By definition of the accompanying alternation intervals
Ik=[:k , ;k], k=1, ..., r, of f &pf in (xi , x i+m+ j), we have

_(&1)k ( f &pf)(t)=& f& pf&� , t # Ef &pf , (xi , xi+m+ j)
& Ik , k=1, ..., r

(17)

and by (16),

Ef &pf , (xi , xi+m+j)
� .

r

k=1

Ik . (18)

Set t1*=x i , t*r+1=xi+m+ j and choose tk* # (;k&1 , :k), k=2, ..., r. Since
r� j, by Lemma 8(i), there exists a non-trivial s # S=span[Bi , ..., Bi+ j&1]
such that

_(&1)k s(t)�0, t # [tk*, t*k+1], k=1, ..., r. (19)

Since Ik �[tk* , t*k+1], k=1, ..., r, we get by (17), (18), and (19),

( f &pf)(t) s(t)�0, t # Ef &pf , (xi , xi+m+j)
. (20)

Let

p(t)={s(t),
0,

if t # [x i , xi+m+ j)
if t # [x i+m+ j , xi+n].

By (20), it is obvious that

( f &pf)(t) p(t)�0, t # Ef &pf , [xi , xi+n] .
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Hence, extending p (b&a)-periodically on the real line gives a non-trivial
spline from Pm(Kn), which contradicts, by Theorem 7, the strong unicity
of pf . This proves Lemma 9. K

We remark that the proof of Lemma 9 shows that in the case of odd
dimension (8) holds true for !=a.

3. INTERPOLATION BY PERIODIC SPLINES

In this section we state our results on interpolation by periodic splines.
These results will be needed for proving Theorem 3 and Theorem 5. We
begin with the following definition.

Definition 10. Let f # C be a sufficiently differentiable function and a
set [t1 , ..., tn] such that t1� } } } �tn<t1+(b&a) be given. Set dk=
max[ j : tk& j= } } } =tk], k=1, ..., n, and assume that dk�m&1, if
tk # [xi : i # Z] and dk�m, otherwise. The Hermite interpolation problem is
to determine a spline p # Pm(Kn) such that

p(dk)(tk)= f (dk)(tk), k=1, ..., n. (21)

(Choosing t1< } } } <tn gives Lagrange interpolation problem (1).) We call
[t1 , ..., tn] a Hermite interpolation set for Pm(Kn) if for every sufficiently
differentiable function f # C the Hermite interpolation problem (21) has a
unique solution from Pm(Kn). If t1< } } } <tn , we call such a set [t1 , ..., tn]
an interpolation set for Pm(Kn). For each g # C(R) having a finite number
of zeros in the (non-empty) interval I�R, we denote by NI (g) the number
of zeros of g (counting multiplicities) in I.

In the case of odd dimension of Pm(Kn) the next lemma on Hermite
interpolation was proved by Schumaker [19, Theorem 8.8]. Davydov [2]
considered the case of Lagrange interpolation for even dimension. The
following result is a characterization of Hermite interpolation sets for
Pm(Kn).

Lemma 11. Let [t1 , ..., tn] be as in Definition 10 and set T=[tk : k # Z],
where ti+ jn=ti+ j(b&a), i=1, ..., n, j # Z"[0]. Consider the following
statements.

(i) The set [t1 , ..., tn] is a Hermite interpolation set for Pm(Kn).
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(ii) For every interval (xi , x i+m+ j), j=1, ..., n&m&1, i # Z, we have

card((xi , xi+m+ j) & T )=card([k : tk # (xi , xi+m+ j)])� j (22)

if n>m+1.

(iii) There does not exist a spline p # Pm(Kn) having exactly the set of
zeros [t1 , ..., tn] in [t1 , t1+(b&a)) (counting multiplicities).

If n is odd, then (i) and (ii) are equivalent. If n is even, then (i) holds if
and only if (ii) and (iii) are satisfied.

Proof. We first show that (i) implies (ii) in each case. Let n>m+1.
Suppose, contrary to (ii), that there exist j # [1, ..., n&m&1], i # Z, such
that

card((xi , xi+m+ j) & T )� j&1.

This gives a non-trivial spline s # S=span[Bi , ..., Bi+ j&1], such that

s(dk)(tk)=0, tk # (xi , xi+m+ j) & T

(cf. Nu� rnberger [16, Theorem 3.7]). Extending p, defined by

p(t)={s(t),
0,

if t # (xi , x i+m+ j)
if t # [x i+m+ j , xi+n],

(b&a)-periodically on the real line gives a non-trivial solution of the
homogeneous problem (21), which contradicts (i). (i) O (iii) is evident.

We next prove that (ii) implies (i) if n is odd, and that (ii) and (iii) imply
(i) if n is even. Conversely, suppose that there exists a non-trivial solution
p # Pm(Kn) of the homogeneous problem (21) with respect to [t1 , ..., tn].
Assume that p has infinitely many zeros in [a, b). Therefore, n>m+1.
Choose j # [1, ..., n&m&1], i # Z, such that p has a finite number of zeros
(counting multiplicities) in (xi , xi+m+ j) and vanishes on the left and on the
right, i.e.,

p(t)=0, t # [xi&1 , xi] _ [xi+m+ j , xi+m+ j+1].

Since (ii), it follows for s= p| (xi , xi+m+j)
# S, N(xi , xi+m+j)

(s)� j, which is a
contradiction (cf. Nu� rnberger [16, Theorem 3.3]). Therefore, the number
of zeros of p in [a, b) (counting multiplicities) is finite. By the choice of p,
N[a, b)( p)�n. If n is odd, then this is a contradiction. If n is even, then it
follows that N[a, b)( p)=n. By the choice of p, this contradicts (iii). This
completes the proof of Lemma 11. K
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Remark 12. Let us mention that (22) holds for each set [t1 , ..., tn] as
in Definition 10, if j # [0, n&m]. Therefore, we always have (22) if
n # [m, m+1]. Moreover, it is easy to see that if n>m+1, (22) holds for
all j # [1, ..., n&m&1], i # Z, if and only if

card([xi , xi+k] & T )�m+k, k=1, ..., n&m&1, i # Z.

(Here, T=[tk : k # Z] is defined as in Lemma 11.)

In the beginning of Section 1, we called a set [t1 , ..., tn] such that
t1< } } } <tn(<t1+(b&a)), for which the contrary of statement (iii) from
Lemma 11 holds, a NI-set for Pm(Kn) (see Definition 1.).

Lemma 13. Let n be even, n�m, and [t1 , ..., tn] as in Definition 10 and
set T=[tk : k # Z], where ti+ jn=t i+ j(b&a), i=1, ..., n, j # Z"[0]. If there
exists a spline p # Pm(Kn) having exactly the set of zeros [t1 , ..., tn] in [t1 , t1

+(b&a)) (counting multiplicities), then for every interval (xi , xi+m+ j),
j=0, ..., n&m, i # Z, we have

card((xi , xi+m+ j) & T )� j+1.

Proof. To the contrary, assume that there exist j # [0, ..., n&m], i # Z,
such that

card((xi , xi+m+ j) & T )� j.

Therefore,

card([xi+m+ j , x i+n] & T )�n& j.

By assumption,

s= p| [xi+m+j , xi+n] # Sm(xi+m+ j+1 , ..., x i+n&1)=span[Bi+ j , ..., Bi+n&1]

has a finite number of zeros in [xi+m+ j , x i+n]. Thus, N[xi+m+j , xi+n](s)�
n& j, which is a contradiction (cf. Nu� rnberger [16, Theorem 3.3]). The
lemma is proved. K

By Lemma 11 and Lemma 13, we obtain the following result.

Corollary 14. Let n be even, n�m, and [t1 , ..., tn] as in Definition 10
and set T=[tk : k # Z], where t i+ jn=ti+ j(b&a), i=1, ..., n, j # Z"[0].
Suppose that for every interval (xi , xi+m+ j), j=0, ..., n&m, i # Z, we have

card((xi , xi+m+ j) & T )� j

12 F. ZEILFELDER



and there exist j0 # [0, ..., n&m], i0 # Z, such that

card((xi0
, xi0+m+ j0

) & T )= j0 . (23)

Then [t1 , ..., tn] is a Hermite interpolation set for Pm(Kn).

The next theorem is a generalization of Davydov's results on Lagrange
interpolation for even-dimensional Pm(Kn) (cf. Davydov [2, 3], see also
Korneichuk [8, Theorem 2.4.9]). Roughly speaking, the following theorem
says that each set ``between'' a NI-set is an interpolation set for Pm(Kn).

Theorem 15. Let n be even. Suppose that [t1 , ..., tn] is a NI-set for
Pm(Kn). Then every set [t1* , ..., tn*] such that t1*< } } } <tn*<t1+(b&a)=
tn+1 , differing from [t1 , ..., tn], with

tk�tk*�tk+1 , k=1, ..., n (24)

is an interpolation set for Pm(Kn).

Proof. We begin by considering n�m. By Lemma 13, the definition of
a NI-set and (24), it follows that

card((xi , xi+m+ j) & T*)� j, j=0, ..., n&m, i # Z.

(Here, T*=[tk*: k # Z], where t*i+ jn=t i*+ j(b&a), i=1, ..., n, j # Z"[0].)
If there exist j0 # [0, ..., n&m], i0 # Z, such that (23) holds for T* in
(xi0

, xi0+m+ j0
), then, by Corollary 14, [t1*, ..., tn*] is an interpolation set for

Pm(Kn). Therefore, we have to consider the case that

card((xi , xi+m+ j) & T*)� j+1, j=0, ..., n&m, i # Z (25)

or, alternatively, n<m.
If n>m+2, then (25) implies for each set Tk*=T*"[t*k+ln : l # Z],

k=1, ..., n,

card((x (1)
i , x (1)

i+m+ j) & Tk*)� j, j=1, ..., n&m&2, i # Z

where Kn&1=Kn"[xn&1]=[x (1)
0 , ..., x (1)

n&1]. By Lemma 11 and the weak
Chebyshev property of Pm(Kn&1), it follows that

Dk=D \ p1

t1*
} } }
} } }

pk&1

t*k&1

pk

t*k+1

} } }
} } }

pn&1

tn* +>0, k=1, ..., n (26)
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where [ p1 , ..., pn&1] is a suitable basis of Pm(Kn&1). Obviously (26) also
holds if n�m+2. Now let pn # Pm(Kn) be a periodic spline having exactly
the set of zeros [t1 , ..., tn] in [t1 , t1+(b&a)). Since Pm(Kn&1)�Pm(Kn), it
is easily seen that [ p1 , ..., pn&1 , pn] is a basis of Pm(Kn) (cf. [23, Satz
1.1.6]). Choose _ # [&1, 1] such that

_(&1)k pn(t)>0, t # (tk , tk+1), k=1, ..., n (27)

and #=[k # [1, ..., n]: tk<tk*<tk+1]. By assumption, #{<. Laplace
expansion now yields

D=D \ p1

t1*
} } }
} } }

pn

tn*+= :
k # #

(&1)n+k pn(tk*) Dk .

By (24), (26), and (27), it follows that

_(&1)k pn(tk*) Dk>0, k # #.

Thus, D{0, which proves Theorem 15. K

Remark 16. The result of Theorem 15 has consequences for the theory
of interpolation by periodic spline spaces of even dimension. It follows that
in each neighbourhood of a NI-set for Pm(Kn), one can find interpolation
sets for Pm(Kn). In particular, if a NI-set [t1 , ..., tn] for Pm(Kn) is given,
then every set [t1 , ..., tk&1 , tk+1 , ..., tn] _ [t*] with t* # [t1 , t1+(b&a))
and t* � [t1 , ..., tn] is an interpolation set for Pm(Kn).

Moreover, since [x0 , ..., xn&1] is a NI-set for P2l (Kn), l # N (cf.
Krinzessa [7, Satz 12]), we conclude from Theorem 15 that each set
[t1* , ..., tn*] such that t1*< } } } <tn*<xn , differing from [x0 , ..., xn&1] with
xk&1�tk*�xk , k=1, ..., n, is an interpolation set for P2l (Kn). For the case
of odd degree see [23, 2.2.5�2.2.6].

Remark 17. It can be seen easily (cf. [23, Satz 2.1.3]) that the converse
of Theorem 15 holds in the following sense. For every interpolation set
[t1* , ..., tn*] for Pm(Kn), there exists a NI-set [t1 , ..., tn] for Pm(Kn) such
that tk*<tk<t*k+1 , k=1, ..., n.

4. PROOF OF THEOREM 3

In this section we prove Theorem 3. We show that the necessary condi-
tions given in Lemma 9 are also sufficient if Pm(Kn) is of odd dimension.
For proving this, we need the following lemma which is a consequence of
the weak Chebyshev property of Sm(x1 , ..., xn&1)=span[B&m , ..., Bn&1]
(cf. Nu� rnberger [16, Lemma 1.11]).
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Lemma 18. Let points a�t1< } } } <tn+m+1�b be given. The following
statements are equivalent.

(i) There does not exist a non-trivial spline s # Sm(x1 , ..., xn&1) such
that

(&1)k s(tk)�0, k=1, ..., n+m+1.

(ii) For all k # [1, ..., n+m+1],

D \B&m

t1 } } }
} } }

tk&1

} } }
tk+1 } } }

Bn&1

tn+m+1+{0.

In the following we show that if n is odd, then statement (ii) of Theorem
3 implies the strong unicity of pf # Pm(Kn). Together with Lemma 9 this
proves Theorem 3.

Proof of Theorem 3, (ii) O (i). Let us first consider the case n�m+1,
i.e., Pm(Kn) is a Chebyshev space. Since (3), by the alternation theorem (cf.
Nu� rnberger [16, Theorem 3.12]), pf is a best uniform approximation.
Moreover, pf is unique. By McLaughlin and Somers [9] unique and
strongly unique best uniform approximations from Chebyshev spaces
coincide. This finishes the proof for n�m+1.

We now turn to the case n>m+1. Suppose that pf is not a strongly
unique best uniform approximation of f from Pm(Kn). By Theorem 7 there
exists a non-trivial p # Pm(Kn) such that

( f &pf)(t) p(t)�0, t # Ef &pf , [a, b] . (28)

Let us first assume that p has infinitely many zeros in [a, b). Choose
j # [1, ..., n&m&1] and i # Z such that p has a finite number of zeros
(counting multiplicities) in (xi , xi+m+ j) and vanishes on the left and on the
right, i.e.,

p(t)=0, t # [xi&1 , xi] _ [xi+m+ j , xi+m+ j+1].

By (2), it follows that

A( f &pf)| [xi , xi+m+j]
� j+1.

Set S=span[Bi , ..., Bi+ j&1]. Going to subintervals, if necessary, it follows
that there exists an interval [xr , xr+q], q�1, such that f &pf has d+1
A-points t1< } } } <td+1 in [xr , xr+q], where d=dimS| [xr , xr+q] , but every
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proper subinterval [xr* , xr*+q*], q*�1, of [xr , xr+q] contains at most d*
points from [t1 , ..., td+1], where d*=dimS| [xr* , xr*+q*] . Choose l1 , l2 #
[0, ..., m] such that

S| [xr , xr+q]=span[Br&l1
, ..., Br+q&1&l2

].

Therefore, q+l1&l2=d. We next claim that for all k # [1, ..., d+1],

D \Br&l1

t1 } } }
} } }

tk&1

} } }
tk+1 } } }

Br+q&1&l2

td+1 +{0. (29)

Conversely, suppose that there exists k # [1, ..., d+1] such that

card((xi1
, xi1+m+ j1

) & [t1 , ..., tk&1 , tk+1 , ..., td+1])� j1&1 (30)

where i1 # [r&l1 , ..., r+q&1&l2], j1 # [1, ..., r+q&l2&i1]. Obviously,
[xr , xr+q]"(x i1

, xi1+m+ j1
){<. We consider five cases.

Case 1. Let i1>r and i1+m+ j1<r+q.
By the choice of [t1 , ..., td+1], we have

card([xr , x i1
] & [t1 , ..., td+1])�i1&r+l1 .

Therefore, it follows from (30),

card([xi1+m+ j1
, xr+q] & [t1 , ..., td+1])�d+1+r&i1& j1&l1

Since dim S|[xi1+m+ j1
, xr+q]=d+r&i1& j1&l1 , this contradicts the choice of

[xr , xr+q].

Case 2. Let i1>r and i1+m+ j1>r+q, or i1<r and i1+m+ j1<
r+q. Since the proof of the second of these two cases is similar, we only
consider i1>r and i1+m+ j1>r+q. By (30),

card([xr , x i1
] & [t1 , ..., td+1])�d+1& j1 .

Since i1+ j1&r�q&l2 and d=q+l1&l2 , we have d+1& j1�i1&r+
l1+1. But dim S| [xr , xi1

]=i1&r+l1 , which contradicts the choice of
[xr , xr+q].

Case 3. Let i1=r and i1+m+ j1<r+q, or i1>r and i1+m+ j1=
r+q.

Since the proof of the second of these two cases is similar, we only
consider i1=r and m+ j1<q. By (30),

card([xr+m+ j1
, xr+q] & [t1 , ..., td+1])�d& j1+$0, l1
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where $0, l1
denotes Kronecker's symbol. But dim S| [xr+m+j1

, xr+q]=
d& j1&l1 , which contradicts the choice of [xr , xr+q].

Case 4. Let i1=r and i1+m+ j1>r+q, or i1<r and i1+m+ j1=
r+q.

Since the proof of the second of these two cases is similar, we only
consider i1=r and m+ j1>q. Since j1�q&l2 , we have by (30),

card([xr , xr+q] & [t1 , ..., td+1])�q&l2+1&$0, l1
<d+1

which contradicts the choice of [xr , xr+q].

Case 5. Let i1=r and i1+m+ j1=r+q, i.e., j1=q&m.
By (30),

card([xr , xr+q] & [t1 , ..., td+1])�q&m+2&$0, l1
&$m, l2

.

Therefore,

card([xr , xr+q] & [t1 , ..., td+1])<d+1

which contradicts the choice of [xr , xr+q].
Thus, (29) holds for all k # [1, ..., d+1]. Since [t1 , ..., td+1] is an A-set

of f &pf in [xr , xr+q], it follows that there exists _ # [&1, 1] such that

_(&1)k ( f &pf)(tk)=& f& pf&� , k=1, ..., d+1. (31)

Set s= p| [xr , xr+q] # S| [xr , xr+q] . By (28) and (31),

_(&1)k s(tk)�0, k=1, ..., d+1.

Lemma 18 now implies that s#0 which contradicts the choice of
(xi , xi+m+ j). Consequently, p has only a finite number of zeros in [a, b).
Since n is odd, N[a, b)( p)�n&1. Therefore, the cardinality of each set
[t1* , ..., tr*] with t1*< } } } <tr*<t1*+(b&a) such that

_*(&1)k p(tk*)�0, k=1, ..., r

where _* # [&1, 1], is at most n. Since (3), there exists an A-set
[t1 , ..., tn+1] of f &pf in [a, b], i.e.,

_(&1)k ( f &pf)(tk)=& f& pf&� , k=1, ..., n+1

where _ # [&1, 1]. By (28), it follows that

_(&1)k p(tk)�0, k=1, ..., n+1

which is a contradiction. This completes the proof of Theorem 3. K
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At the end of this section we give a result on strong unicity, which treats
the case of exactly n+1 extremal points of the error.

Corollary 19. Let n be odd, f # C"Pm(Kn) and a spline pf # Pm(Kn) be
given. Suppose that

card(Ef &pf , [a, b))=n+1.

Then the following statements are equivalent.

(i) The spline pf is a strongly unique best uniform approximation of f
from Pm(Kn).

(ii) There exists an A-set [t1 , ..., tn+1] of f &pf in [a, b] such that
each set [t1 , ..., tn+1]"[tk], k=1, ..., n+1, is an interpolation set for
Pm(Kn).

Proof. The case n�m+1 is obvious. Let us consider n>m+1. We
first show that (i) O (ii). By Theorem 3,

A( f &pf)| [a, b]�n+1.

Therefore, the points t1< } } } <tn+1 such that Ef &pf , [a, b)=[t1 , ..., tn+1]
are the A-points of f &pf in [a, b]. Set T=[tk+ln=tk+l(b&a) :
k=1, ..., n+1, l # Z]. By Theorem 3,

card((xi , xi+m+ j) & T)� j+1, j=1, ..., n&m&1, i # Z.

Hence, by Lemma 11, it follows (ii).
We now show that (ii) O (i). Let us assume that pf is not a strongly

unique best uniform approximation of f from Pm(Kn). Since [t1 , ..., tn+1]
is an A-set of f &pf in [a, b], it follows from Theorem 3, that there exist
j # [1, ..., n&m&1], i # Z, such that

card((xi , xi+m+ j) & T )� j.

Here T is given as above. Therefore, there exists k # [1, ..., n+1] such that

card((xi , xi+m+ j) & Tk)� j&1

where Tk=T"[tk+ln : l # Z]. By Lemma 11, this contradicts (ii). The
corollary is proved. K
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5. PROOF OF THEOREM 5

In this section we prove Theorem 5 which gives a complete characteriza-
tion of the strongly unique best uniform approximation from Pm(Kn) in the
case of even dimension. For doing this, we need the interpolation results of
Section 3 and the following lemmas.

Lemma 20. Let n>m+1 and :k�;k<:k+1 , k=1, ..., n, with :1+
(b&a)=:n+1 be given. Let Ik=[:k , ;k], k=1, ..., n, and set

Ik+ln=[:k+l(b&a), ;k+l(b&a)], k=1, ..., n, l # Z"[0].

Suppose that for every interval (xi , xi+m+ j), j=1, ..., n&m, i # Z,

card([Il : Il & (xi , xi+m+ j){<, l # Z])� j+1. (32)

Then there exists [t1* , ..., tn*] with tk* # Ik , k=1, ..., n, and tk* # I 0
k whenever

I 0
k is non-empty, such that for each set [t1 , ..., tn] with :k�tk�tk* ,

k=1, ..., n, or tk*�tk�;k , k=1, ..., n,

card((xi , xi+m+ j) & T )� j, j=1, ..., n&m&1, i # Z

where T=[tk+ln=tk+l(b&a) : k=1, ..., n, l # Z].

Proof. We first describe how to choose [t1*, ..., tn*]. Let k # [1, ..., n].
Set tk*=(:k+;k)�2, if xi � I 0

k , i # Z. Otherwise, choose i1 # Z and
j1 # [0, ..., m] such that

[xi1
, ..., xi1+ j1

]=I 0
k & [xi : i # Z]

and consider the following cases.

Case 1. For all j=1, ..., n&m&1, and i # [i1 , ..., i1+ j1],

card([Il : Il �(xi , x i+m+ j), l # Z])� j (33)

and

card([Il : Il �(xi&m& j , xi), l # Z])� j. (34)

Choose tk* # I 0
k .

Case 2. There exist j* # [1, ..., n&m&1] and i* # [i1 , ..., i1+ j1] such
that

card([Il : Il �(xi* , xi*+m+ j*), l # Z])= j*&1 (35)
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and (34) holds for all j=1, ..., n&m&1, and i # [i1 , ..., i1+ j1]. Choose
i0* # [i1 , ..., i1+ j1] maximal such that (35) holds for a suitable j0* # [1, ...,
n&m&1]. If i0*<i1+ j1 , then choose tk* # (xi

0
* , xi

0
*+1), else choose tk* #

(xi1+ j1
, ;k).

Case 3. There exist j** # [1, ..., n&m&1] and i** # [i1 , ..., i1+ j1]
such that

card([Il : Il �(xi**&m& j** , xi**), l # Z])= j**&1 (36)

and (33) holds for all j=1, ..., n&m&1, and i # [i1 , ..., i1+ j1]. Choose
i0** # [i1 , ..., i1+ j1] minimal such that (36) holds for a suitable
j0** # [1, ..., n&m&1]. If i0**>i1 , then choose tk* # (xi

0
**&1 , x i

0
**), else

choose tk* # (:k , xi1
).

Case 4. There exist j* # [1, ..., n&m&1] and i* # [i1 , ..., i1+ j1] such
that (35) holds and there exist j** # [1, ..., n&m&1] and i** # [i1 , ...,
i1+ j1] such that (36) holds. Choose i0*, j0* and i0** , j0** as in Case 2,
respectively Case 3. Therefore, we obtain by (32),

card([Il : Il & (xi
0
**&m& j

0
** , x i

0
**){<, l # Z])= j0**+1

and

card([Il : Il & (xi
0
* , xi

0
*+m+ j

0
*){<, l # Z])= j0*+1.

Since [xi1
, ..., x i1+ j1

]�I 0
k ,

#=card([Il : Il & (xi
0
**&m& j

0
** , xi

0
*+m+ j

0
*){<, l # Z])= j0*+ j0**+1.

We first consider the case i0*&i0**+m+ j0*+ j0**�n&1. By (32),
#�i0*&i0**+m+ j0*+ j0**+1 ((32) even holds for j=n&m+1, ..., n&1,
since for these choices of j, card([Il : Il & (xi , x i+m+ j){<, l # Z])�card
([Il : Il & (xi , xi+n]{<, l # Z])�n� j+1). Thus, in this case, i0**�i0*+m.

Now let i0*&i0**+m+ j0*+ j0**�n. By (32),

card([Il : Il �(xi
0
**+n& j

0
**&m , x i

0
*+m+ j

0
*), l # Z])

�i0*&i0**+m+ j0*+ j0**&n&1.

Since

card([Il : Il & [xi
0
* , xi

0
**+n& j

0
**&m]{<, l # Z])�n& j0**+1

we have j0*&1�n& j0**+i0*&i0**+m+ j0*+ j0**&n&1. Thus, i0**�
i0*+m.
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Hence, in both cases, it follows that i0*=i1 , i0**=i1+ j1 and j1=m.
Choose tk* # (x i

0
* , xi

0
**)=(xi1

, x i1+m).

We now prove that [t1*, ..., tn*] has the desired property. To the contrary,
assume that there exist [t1 , ..., tn] with :k�tk�tk*, k=1, ..., n, and
j # [1, ..., n&m&1], i # Z, such that

card((xi , xi+m+ j) & T )� j&1.

Therefore, by (32) and tl # Il , l # Z, it follows that

[Il : Il �(xi , x i+m+ j), l # Z]=[I l1+1 , ..., Il1+ j&1]

and xi+m+ j # I 0
l1+ j for a suitable l1 # Z. Obviously, tl1+k # Il1+k , k=1, ...,

j&1. Hence, tl1+ j�xi+m+ j . Set T*=[t*k+ln=tk*+l(b&a), k=1, ..., n,
l # Z]. By the choice of t*l1+ j (see Case 3 and Case 4), :l1+ j�tl1+ j�t*l1+ j<
xi0

** for the chosen xi0
**�xi+m+ j , which is a contradiction. The case

tk*�tk�;k , k=1, ..., n, uses Case 2 and Case 4 and is similar. This com-
pletes the proof of Lemma 20. K

Lemma 21. Let n be even, r # N, 2r&2<n, and points t1< } } } <
t2r&2<t1+(b&a) be given. If 2r>m+2, suppose that

card((xi , xi+m+ j) & T )� j&1&n+2r, j=n&2r+1, ..., n&m, i # Z,

where T=[tk+ln=tk+l(b&a), k=1, ..., 2r&2, l # Z]. Then there exists
p # Pm(Kn) having exactly the set of zeros [t1 , ..., t2r&2] in [t1 , t1+(b&a))
and all of these zeros are simple.

Proof. Let us first consider the case 2r&1�m+1, i.e., Pm(K2r&1),
where K2r&1=Kn"[x2r&1 , ..., xn&1], is a Chebyshev space. Choose t2r&1 #
(t2r&2 , t1+(b&a)). Hence, there exists p # Pm(K2r&1) such that p(t2r&1)
=1 and p(tk)=0, k=1, ..., 2r&2. Since N[a, b)( p)=2r&2, and Pm(K2r&1)
�Pm(Kn), the proof is finished for 2r&1�m+1. We now turn to the case
2r>m+2. We claim that there exists Kn&1=[x (1)

0 , ..., x (1)
n&1]/Kn such

that

card((x (1)
i , x (1)

i+m+ j) & T )� j&n+2r, j=n&2r, ..., n&1&m, i # Z.

(37)

If card((xi , xi+m+ j) & T)� j&n+2r, j=n&2r+1, ..., n&m, i # Z, then set
Kn&1=Kn "[xn&1]. In this case, (37) obviously holds. Now let us choose
j* # [n&2r+1, ..., n&m] minimal such that

card((xi* , xi*+m+ j*) & T)= j*&1&n+2r
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holds for a suitable i* # Z. Set Kn&1=Kn "[x i*]=[x (1)
0 , ..., x (1)

n&1]. If xi* #
(x (1)

i , x (1)
i+m+ j), then

card((x (1)
i , x (1)

i+m+ j) & T )=card((xi , x i+1+m+ j) & T )� j&n+2r.

Let us now assume that there exist j # [n&2r+1, ..., n&1&m], i # Z, with
xi* � (x (1)

i , x (1)
i+m+ j) and

j&1&n+2r=card((x (1)
i , x (1)

i+m+ j) & T )=card((x i , x i+m+ j) & T ).

We have to consider two cases.

Case 1. Let i*<i<i*+m+ j*�i+m+ j�i*+n.
By the minimal choice of j*,

card((xi* , x i*+m+ j*) & T )

=card((xi* , xi+m+ j) & T )

�i&i*+ j&1&n+2r

&card((xi , xi+m+ j) & T )

= j&1&n+2r

+card((xi , xi*+m+ j*) & T )

>i*&i+ j*&1&n+2r

> j*&1&n+2r. (38)

This is a contradiction to the choice of j*. (Note that if i*&i+ j*<
n&2r+1, then card((xi , xi*+m+ j*) & T )�0 gives (38).)

Case 2. Let i*<i*+m+ j*�i<i+m+ j�i*+n.
Since n>2r&2,

card((xi* , x i*+m+ j*) & T )=card((xi* , xi+m+ j) & T )

�i&i*+ j&1&n+2r

&card((xi , xi+m+ j) & T )

= j&1&n+2r

&card([xi*+m+ j* , xi] & T)

�i&i*& j*&1

� j*+1> j*&1&n+2r (39)

which contradicts the choice of j*. (Note that if i*&i+ j*+n<n&2r+1,
then card([xi*+m+ j* , xi] & T)�2r&2 gives (39).)
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We have shown that Kn&1 has property (37). Proceeding by induction
yields K2r&1=[x (n&2r+1)

0 , ..., x (n&2r+1)
2r&1 ]/Kn such that

card((x (n&2r+1)
i , x (n&2r+1)

i+m+ j ) & T )� j, j=0, ..., 2r&1&m, i # Z. (40)

Choose t2r&1 # (t2r&2 , t1+(b&a)). From Lemma 11 and (40), it follows
that there exists p # Pm(K2r&1) such that p(t2r&1)=1 and p(tk)=0,
k=1, ..., 2r&2. Since (40), by a similar argumentation as in the proof of
Lemma 11, p has only a finite number of zeros in [a, b). Since N[a, b)( p)=
2r&2 and Pm(K2r&1)�Pm(Kn), p has the desired properties. This
completes the proof of Lemma 21. K

We now prove Theorem 5.

Proof of Theorem 5. We first prove that (i) O (ii). By Lemma 9, (4)
and (5) hold. Let !* # [a, b) be such that f &pf has exactly n alternation
intervals Ik=[:k , ;k], k=1, ..., n, in [!*, !*+(b&a)] and choose
_ # [&1, 1] such that

_(&1)k ( f &pf)(t)=& f& pf&� ,
(41)

t # Ef &pf , [!*, !*+(b&a)] & Ik , k=1, ..., n.

We extend [Ik , k=1, ..., n] as in the formulation of Lemma 20. If
n>m+1, then by (4), it follows that

card([Il : Il & (xi , xi+m+ j){<, l # Z])� j+1,
(42)

j=1, ..., n&m&1, i # Z.

We claim that each set [t~ 1 , ..., t~ n] such that t~ 1< } } } <t~ n<t~ 1+(b&a)=
t~ n+1 with t~ k # [;k , :k+1], k=1, ..., n, is an interpolation set for Pm(Kn).
Suppose the contrary. If n>m+1, it follows from (42) that

card((xi , xi+m+ j) & T� )� j, j=1, ..., n&m&1, i # Z

where T� =[t~ k+ln=t~ k+l(b&a) : k=1, ..., n, l # Z]. By Lemma 11, there
exists p # Pm(Kn) having exactly the simple zeros [t~ 1 , ..., t~ n] in [t~ 1 , t~ 1+
(b&a)). Replacing p by &p, if necessary, we have

_(&1)k+1p(t)�0, t # [t~ k , t~ k+1], k=1, ..., n. (43)

Since Ef &pf , [!*, !*+(b&a)] & Ik+1 �[t~ k , t~ k+1], k=1, ..., n, we conclude
from (41) and (43),

( f &pf)(t) p(t)�0, t # Ef &pf , [!*, !*+(b&a)] & Ik , k=1, ..., n. (44)
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Since

Ef &pf , [!*, !*+(b&a)] � .
n

k=1

Ik

it follows from (44) that

( f &pf)(t) p(t)�0, t # Ef &pf , [!*, !*+(b&a)] .

By Theorem 7, this contradicts the strong unicity of pf .
We next prove that there exists a NI-set [t1 , ..., tn] for Pm(Kn) such

that tk # Ik , k=1, ..., n, and tk # I 0
k whenever I 0

k {<. Set Pm(Kn)=
span[ p1 , ..., pn]. Define D0 : [0, 1] [ R, by

D0({)=D \ p1

�1({)
} } }
} } }

pn

�n({)+ , { # [0, 1],

where �k({)=;k+{(:k+1&;k), { # [0, 1], k=1, ..., n. By the above, it
follows that D0({){0, { # [0, 1]. By continuity of D0 , it follows that

D0(0) D0(1)=D \p1

;1

} } }
} } }

pn

;n+ D \ p1

:2

} } }
} } }

pn&1

:n

pn

:1+>0. (45)

(Note that by (5), :k*<;k* for at least one k* # [1, ..., n], and hence
[;1 , ..., ;n]{[:1 , ..., :n].) Now let [t1* , ..., tn*] be such that tk* # Ik ,
k=1, ..., n, and tk* # I 0

k whenever I 0
k {<. In addition, since (42), if

n>m+1, we choose [t1* , ..., tn*] as in Lemma 20. Define D1 : [0, 1] [ R,
by

D1({)=D \ p1

,1({)
} } }
} } }

pn

,n({)+ , { # [0, 1]

where

,k({)={:k+2{(tk*&:k),
;k+2(1&{)(tk*&;k),

if { # [0, 1
2]

if { # ( 1
2 , 1]

k=1, ..., n.

By (45),

D1(0) D1(1)=D \p1

:1

} } }
} } }

pn

:n+ D \p1

;1

} } }
} } }

pn

;n+=&D0(0) D0(1)<0.
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Since (5), by continuity of D1 , there exists {0 # (0, 1) such that D1({0)=0.
Set tk=,k({0), k=1, ..., n. Clearly, tk # Ik , k=1, ..., n, and tk # I 0

k whenever
I 0

k {<. By the choice of [t1*, ..., tn*], if n>m+1, it follows from
Lemma 20 that

card((xi , xi+m+ j) & T )� j, j=1, ..., n&m&1, i # Z

where T=[tk+ln=tk+l(b&a) : k=1, ..., n, l # Z]. Hence, by Lemma 11,
[t1 , ..., tn] is a NI-set for Pm(Kn), which has all the desired properties.

We now show that (ii) O (i). To the contrary, suppose that pf is not a
strongly unique best uniform approximation of f from Pm(Kn). By
Theorem 7, there exists a non-trivial p # Pm(Kn) such that

( f &pf)(t) p(t)�0, t # Ef &pf , [a, b] . (46)

Using (4), if n>m+1 and the same argumentation as in the proof
of Theorem 3, (ii) O (i) in Section 4, we obtain that p has only a finite
number of zeros (counting multiplicities) in [a, b). Since n is even,
N[a, b)( p)�n. Therefore, the cardinality of each set [t1* , ..., tr*] with
t1*< } } } <tr*<t1*+(b&a) such that

_*(&1)k p(tk*)�0, k=1, ..., r (47)

where _* # [&1, 1], is at most n+1. If

A( f &pf) | [a, b]�n+2

then (46) implies (47) for a suitable _* # [&1, 1] with r�n+2, which is
a contradiction. Therefore and by (5), we have to consider the case

A( f &pf) | [!, !+(b&a)]=n+1

where ! # [a, b), i.e., there exists !* # [a, b) such that f &pf has exactly n
alternation intervals Ik=[:k , ;k], k=1, ..., n, in [!*, !*+(b&a)], where
I 0

k* {< for at least one k* # [1, ..., n]. By assumption, there exists a NI-set
[t1 , ..., tn] for Pm(Kn) such that tk # Ik , k=1, ..., n, and tk # I 0

k when-
ever I 0

k {<. Since I 0
k* {<, each set [t1* , ..., tn*] with t1*< } } } <

tn*<t1*+(b&a) such that tk* # [;k , :k+1], k=1, ..., n, differs from
[t1 , ..., tn], and obviously tk�tk*�tk+1 , k=1, ..., n. By Theorem 15, each
such set [t1*, ..., tn*] is an interpolation set for Pm(Kn). In the following, we
show that the assumption (46) leads to a NI-set [t1*, ..., tn*] for Pm(Kn)
such that tk* # [;k , :k+1], k=1, ..., n, which is a contradiction.
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Since there exists _ # [&1, 1] such that

_(&1)k ( f &pf)(t)=& f& pf&� ,
(48)

t # Ef &pf , [!*, !*+(b&a)] & Ik , k=1, ..., n

we have by (46),

_(&1)k p(:k)�0 and _(&1)k p(;k)�0, k=1, ..., n.

Hence, there exist t~ k # [;k , :k+1], k=1, ..., n, such that p(t~ k)=0,
k=1, ..., n.

Case 1. t~ 1< } } } <t~ n<t~ 1+(b&a).
Since (4), it follows that

card((xi , xi+m+ j) & T� )� j, j=0, ..., n&m&1, i # Z

where T� =[t~ k+ln=t~ k+l(b&a): k=1, ..., n, l # Z]. We conclude that
[t1* , ..., tn*]=[t~ 1 , ..., t~ n] is a NI-set for Pm(Kn).

Case 2. There exist r�1 and K0=[k1 , ..., kr]�[1, ..., n], such that

t~ k=:k+1=;k+1=t~ k+1 , k # K0 .

We choose r maximal. We may assume that each t~ k with k # K0 is a zero
of p where p does not change sign (i.e., p(t~ k&$) p(t~ k+$)>0, $>0), since
otherwise an induction argument shows that one could choose t~ k<t~ k+1 .
Moreover, since N[a, b)( p)�n, it follows that if k # K0 , then k&1,
k+2 � K0 . Set K1=[k1+1, ..., kr+1]. We distinguish between the cases
m�2 and m=1.

Case 2a. m�2.

Since N[a, b)( p)�n, it follows that t~ k , k # K0 are exactly the double zeros
of p in [t~ 1 , t~ 1+(b&a)) and t~ k , k # [1, ..., n]"(K0 _ K1) are exactly the
simple zeros of p in [t~ 1 , t~ 1+(b&a)) and there does not exist a zero of p
in [t~ 1 , t~ 1+(b&a))"[t~ 1 , ..., t~ n]. By (46) and (48), it follows that

_(&1)k+1 p(t)>0, t # (t~ k , t~ k+1), k=1, ..., n. (49)

(Note that (t~ k , t~ k+1)=<, if k # K0 .) By Lemma 13, we have for n�m

card((xi , xi+m+ j) & T� )� j+1, j=0, ..., n&m, i # Z
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where T� =[t~ k+ln=t~ k+l(b&a) : k=1, ..., n, l # Z]. Set T� =[t̂k+ln=t~ k+
l(b&a) : k # [1, ..., n]"(K0 _ K1), l # Z]. Thus, if n&2r>m,

card((xi , xi+m+ j) & T� )� j+1&2r, j=2r&1, ..., n&m, i # Z.

By Lemma 21, there exists p̂ # Pm(Kn) having exactly the set of zeros
[t~ k : k # [1, ..., n]"(K0 _ K1)] in [t~ 1 , t~ 1+(b&a)) and all of these zeros are
simple. Therefore, by replacing p̂ by & p̂ if necessary, we have

_(&1)k p̂(t)>0, t # (t~ k&1 , t~ k+2), k # K0 . (50)

Now choose $>0 such that t~ k&$>;k , t~ k+$<:k+2 , k # K0 , and fix =>0
such that

_(&1)k ( p(t~ k&$)&=p̂(t~ k&$))>0, k # K0 (51)

and

_(&1)k ( p(t~ k+$)&=p̂(t~ k+$))>0, k # K0 . (52)

Set p*= p&=p̂ # Pm(Kn). Obviously, p*�0. By (50), we have

_(&1)k p*(t~ k)=(&1)k+1 _=p̂(t~ k)<0, k # K0 .

By (51) (respectively (52)), it follows that there exist tk* # (t~ k&$, t~ k)�
[;k , :k+1] (respectively t*k+1 # (t~ k , t~ k+$)�[;k+1 , :k+2]), k # K0 , such
that p*(tk*)= p*(t*k+1)=0. In addition, set tk*=t~ k , k # [1, ..., n]"
(K0 _ K1). Thus, p*(tk*)=0, k # [1, ..., n]"(K0 _ K1) and t1*< } } } <
tn*<t1*+(b&a). By (4) and tk* # [;k , :k+1], k=1, ..., n, we have for
n>m+1

card((xi , xi+m+ j) & T*)� j, j=1, ..., n&m&1, i # Z

where T*=[t*k+ln=tk*+l(b&a) : k=1, ..., n, l # Z]. Hence, as in the proof
of Lemma 11, it follows that p* has exactly the set of zeros [t1*, ..., tn*] in
[t1* , t1*+(b&a)). Therefore, [t1* , ..., tn*] is a NI-set for Pm(Kn) with tk* #
[;k , :k+1], k=1, ..., n.

Case 2b. m=1.

In this case, [t~ k : k # K0]�Kn , and it is easily seen that there does not
exist a zero of p in [t~ 1 , t~ 1+(b&a))"[t~ 1 , ..., t~ n]. Set xjk

=t~ k , k # K0 , and fix
=>0 such that sk # S1(x jk

), k # K0 , determined by sk(t~ k)=&p(xjk&1)
| p(xjk&1)| &1 =, sk(xjk&1)= p(xjk&1), and sk(x jk+1)= p(xjk+1) has the zeros
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tk* # (;k , :k+1), t*k+1 # (;k+1 , :k+2), k # K0 . Moreover, set tk*=t~ k , k #
[1, ..., n]"(K0 _ K1) and consider the (b&a)-periodic extension of

p*(t)={
sk(t), if t # [xjk&1 , xjk+1], k # K0

p(t), if t # [xj1&1 , x j1&1+n)" .
k # K0

[xjk&1 , x jk+1],

on the real line, which is evidently in P1(Kn). By an analogue argumenta-
tion as above, [t1* , ..., tn*] is a NI-set for P1(Kn) with tk* # [;k , :k+1],
k=1, ..., n.

This completes the proof of Theorem 5. K
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